怎么用渐进分数来表示圆周率的近似值

网上有关“怎么用渐进分数来表示圆周率的近似值”话题很是火热,小编也是针对怎么用渐进分数来表示圆周率的近似值寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1、古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

2、圆周率小数点后20000位 3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164.....

3、渐进分数是指一个以分数的形式出现的两个有理数的商的近似值

 如我们熟知的密率355/113和约率22/7就是3.1415926/1的渐进分数。

渐进分数的算法:设有两数:a,b 不妨设a>b 运用辗转相除法(欧几里德算法),得:

 A=A0B+R 0≤R<B

 B=A1R+R1 0≤R1<R

 R=A2R1+R2 0≤R2<R1Rn=An+2Rn+1+Rn+2 0≤Rn+2<Rn+1(算式中的粗体大写为字母,其余为角标)。

1到100π的值,分数怎么算?

圆周长与直径的比,称为圆周率,符号π,我国古代很早就得出了比较精确的圆周率。我国古籍《隋书·律历志》记载,南北朝的科学家祖冲之推算圆周率π的真值在3.1415926与3.1415927之间,他所得到的π的近似分数是密率355/113。德国人奥托在1573年才重新得出祖冲之密率355/113,落后了11个世纪。英国数学家向克斯穷毕生精力,把圆周率算到小数点以后707位,曾被传为佳话,但是他在第528位上产生了一个错误,因此后面的100多位数字是不正确的。

由于电子计算机的问世,圆周率计算的精确性的纪录一个接一个地被打破。就目前所知,人们已经计算到小数点后面100万位,这是由两位法国女数学工作者吉劳德与波叶算出的。1973年5月24日,她们利用7600CDC型电子计算机完成了这一工作,但直到同年9月才得到证实。所公布的100万位的圆周率的值是3.141592653589793……5779458151,如把这些数字印成一本书,这本书将足有200页厚,读者读这本书时一定会感到这是世界上最沉闷乏味的一本书。

1983年,日本东京大学的两位学者利用超高速的HITAC电子计算机,把π算到了16777216位,他们打算在不久的将来把计算位数再要翻一番,并最终突破1亿位大关。

1到100π的值:

1π=3.14,2π=6.28,3π=9.42,4π=12.56,5π=15.7,6π=18.84,7π=21.98,8π=25.12,9π=28.26,10π=31.4

11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38,18π=56.52,19π=59.66,20π=62.8

21π=65.94,22π=69.08,23π=72.22,24π=75.36,25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.2

31π=97.34,32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.6

41π=128.74,42π=131.88,43π=135.02,44π=138.16,45π=141.3,46π=144.44,47π=147.58,48π=150.72,49π=153.86,50π=157

51π=160.14,52π=163.28,53π=166.42,54π=169.56,55π=172.7,56π=175.84,57π=172.98,58π=182.12,59π=185.26,60π=188.4

61π=191.54,62π=194.68,63π=197.82,64π=200.96,65π=204.1,66π=207.24,67π=210.38,68π=213.52,69π=216.66,70π=219.8

71π=222.94,72π=226.08,73π=229.22,74π=232.36,75π=235.5,76π=238.64,77π=241.78,78π=244.92,79π=248.06,80π=251.2

81π=254.34,82π=257.48,83π=260.62,84π=263.76,85π=266.9,86π=270.04,87π=273.18,88π=276.32,89π=279.46,90π=282.6

91π=285.74,92π=288.88,93π=292.02,94π=295.16,95π=298.3,96π=301.44,97π=304.58,98π=307.72,99π=310.86,100π=314

扩展资料:

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。

参考资料:

百度百科-圆周率 (圆的周长与直径的比值)

关于“怎么用渐进分数来表示圆周率的近似值”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(19)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 落离的头像
    落离 2025年11月29日

    我是七日号的签约作者“落离”

  • 落离
    落离 2025年11月29日

    本文概览:网上有关“怎么用渐进分数来表示圆周率的近似值”话题很是火热,小编也是针对怎么用渐进分数来表示圆周率的近似值寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...

  • 落离
    用户112908 2025年11月29日

    文章不错《怎么用渐进分数来表示圆周率的近似值》内容很有帮助

联系我们:

邮件:七日号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信